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Abstract— This work presents a new formulation of a mod-
ular relative Jacobian used to control combined manipulators
as a single manipulator with a single effector. In particular,
this modular relative Jacobian is designed for 3-arm parallel
manipulators. It is called a relative Jacobian because it is ex-
pressed relative to the reference frames at the manipulator end-
effectors. It is modular because it uses the existing information
of each standalone manipulator component to arrive at the
necessary expressions for the combined system. This work is
part of a series of studies to express a single end-effector control
of combined manipulators, in parallel as well as other types
of base configurations. This holistic approach of controlling
combined manipulators affords a drastic increase of the null-
space dimension and the convenience to use all the principles
of controlling a single manipulator for the resulting combined

system. Derivation of the modular relative Jacobian for a 3-arm
parallel manipulator is shown, together will simulation results.

Index Terms— Modular kinematics, 3-arm parallel manipu-
lators, single end-effector control, relative Jacobian

I. INTRODUCTION

Modularity of manipulator kinematics and dynamics ex-

pressions have been recently actively studied because of

the increasing complexity of robot structures. In particular,

robots are no longer confined to single manipulators struc-

tures, but are now consisting of two or more manipulators

combined together to form one single robot, like dual-arms,

humanoids, quarupeds, hexapods, etc. Modular approach in

the study of parallel robots has been used to many different

types of applications, which include modular micro parallel

robots [1], modular control architecture [2], modular design

of parallel robots [3], kinematics and design of two variants

[4], modular, wire-driven parallel robots [5], [6], design of

modular parallel robots [7], multi-robot system ARGoS [8],

and reconfigurable parallel robots [9], to name a few.

This study proposes to control combined 3-arm parallel

manipulators (shown in Fig 1) as a one single robot with a

single end-effector. The advantage of this type of controller is

two-fold: (1) it drastically increase the null-space dimension

of the resulting combined manipulators and (2) the principles

of single manipulator control can now be applied to the

combined manipulators. For example, consider a dual-arm
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Fig. 1. A 3-arm parallel manipulator. Simulation video is shown here:
https://youtu.be/w87Ei7Z2Uis.

robot with each arm having six degrees-of-freedom (6-DOF).

When each of the two arms is independently controlled in

the full space, the resulting dual-arm robot is non-redundant.

However, if the two arms are controlled in the relative full

space, the resulting dual-arm robot has 6-DOF in the null

space. In addition, through the single end-effector control,

the combined manipulators can use a single manipulator

controller, such that a strict task prioritization can now be

implemented throughout the entire system.

Secondly, this study proposes modularity of the derived

relative Jacobian. for the 3-arms. Modularity of the de-

rived expression adds to the ease of implementation of the

proposed single end-effector control. This is because the

existing information of each of the standalone manipulator

components will be used to arrive at the resulting expressions

for the combined systems. Rotation and wrench transforma-

tion matrices are used to transform each of the standalone

Jacobians to arrive at the relative Jacobian of the 3-arms.

A more compact modular relative Jacobian was first shown

in [10], which reveals a wrench transformation matrix that

was not present or was not explicitly expressed in the previ-

ous relative Jacobians. It was further shown that omission of

the wrench transformation matrix can affect the performance

of the dual-arm, including the forces and moments exerted

at the end-effectors [11]. The concept of a relative Jacobian

was first introduced in [12], [13]. A recent application of the

relative Jacobian to asymmetric bimanual task was shown

[14].

https://youtu.be/w87Ei7Z2Uis
Rodrigo Jamisola
International Journal of Mechanical Engineering and Robotics Research
vol. 5, no. 2, Apr. 2016, pp. 90-95.



{2}

{1} {3}
{5}

{4}

{6}

Robot A
Robot B

Robot C

Fig. 2. An schematic diagram of a 3-arm parallel manipulator, with the
corresponding reference frames and the relative position vectors.

II. NAMING CONVENTION FOR SYMBOLS

In Fig. 2, the schematic diagram of a 3-arms parallel ma-

nipulator is shown, together with the corresponding reference

frames. The base reference frames are odd-numbered, while

the end-effector reference frames are even-numbered. The

relative position vectors are also shown.

Consider reference frames {i} and { j}, such that i p j is the

position of frame { j} with respect to frame {i}, and iR j is the

rotation of frame { j} with respect to frame {i}. In addition,

a Jacobian iJ j can be expressed with respect to those frames.

From the figure, we state the following conventions for the

Jacobians of the standalone manipulators. The Jacobian for

robot A is 1J2, for robot B is 3J4 and for robot C is 5J6, each

is expressed with respect to the indicated reference frame

indices.

We assign the position Jacobian iJp j and orientation Ja-

cobian iJo j as components of the Jacobian iJ j, that is, iJ j =
[

iJp j,
iJo j

]T
. The joint velocities q̇i j = [q̇i, q̇ j]

T , such qi and q j

are the joint velocities of the robot with end-effector frames

{i} and { j}, respectively. For example 1J2 = [1Jp2,
1Jo2]

T

is the Jacobian for robot A, and 2J4 = [2Jp4,
2Jo4]

T is the

relative Jacobian of the dual-arm consisting of robots A and

B. The dual-arm joint velocities q̇24 = [q̇2, q̇4]
T , where q̇2 are

the joint velocities of robot A q̇4 are the joint velocities of

robot B. Naming convention for symbols and most symbols

used in this work are shown in Table I.

III. DERIVATION OF THE MODULAR 3-ARM RELATIVE

JACOBIAN

In this section, we present the derivation of the modular

relative Jacobian for three parallel manipulators. We derive

the modular relative Jacobian of the 3-arm parallel manipula-

tor by expressing the end-effector of the robot C with respect

to the end-effector of robot A. We will do this by taking two

robots at a time, the same method that was invoked for the

modular relative Jacobian of a dual-arm as derived in [10].

We show here the modular relative Jacobian for dual-arms as

shown in [10], such that the relative Jacobian for a dual-arm

consisting of robots A and B in Fig. 2 is

2J4 =
[

−2Ψ4
2Ω1

1J2
2Ω3

3J4

]

, (1)

TABLE I

SYMBOLS-NAMING CONVENTION

Sym. Description

i p j position of frame { j} w.r.t. frame {i}; its first derivative is i ṗ j
iR j orientation of { j} w.r.t. {i}; its first derivative is iṘ j
iω j rotational velocity of { j} w.r.t. {i}
iJ j [iJp j ,

iJo j ]
T Jacobian from {i} to { j}

iJp j position component of Jacobian iJ j
iJo j orientation component of Jacobian iJ j

1J2 Jacobian of robot A
3J4 Jacobian of robot B
5J6 Jacobian of robot C

2J4 relative Jacobian of dual-arm robots A and B
4J6 relative Jacobian of dual-arm robots B and C
2J6 relative Jacobian of dual-arm robots A and C
2
3J6 relative Jacobian of 3-arm robots A, B and C

q̇2 joint velocities of robot A
q̇4 joint velocities of robot B

q̇6 joint velocities of robot C

q̇24 [q̇2, q̇4]
T joint velocities of dual-arm robots A and B

q̇46 [q̇4, q̇6]
T joint velocities of dual-arm robots B and C

q̇246 [q̇2, q̇4, q̇4]
T joint velocities of 3-arm robots A, B, and C

2
3 p6 3-arm relative position of {6} w.r.t. {2}
2
3 ṗ6 3-arm relative translational velocity of {6} w.r.t. {2}
2
3ω6 3-arm relative rotational velocity of {6} w.r.t. {2}

and the relative Jacobian of a dual-arm consisting of robots B

and C in Fig. 2 is

4J6 =
[

−4Ψ6
4Ω3

3J4
4Ω5

5J6

]

. (2)

Lastly, the relative Jacobian for dual-arm robots A and C is

2J6 =
[

−2Ψ6
2Ω1

1J2
2Ω5

5J6

]

. (3)

Such that the wrench transformation matrix iΨ j is defined

as
iΨ j =

[

I −S(ip j)
0 I

]

(4)

and the rotation matrix iΩ j is expressed as

iΩ j =

[

iR j 0

0 iR j

]

. (5)

Given ω = [ωx,ωy,ωz]
T

, the operator S(ω) is the skew sym-

metric operator used to replace the cross-product operator

and is expressed as

S(ω) =





0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0





. (6)

To complete the definition of the modular dual-arm manip-

ulators the shown robots in Fig. 2, we define the relative

position vectors between the end-effectors, called i p j for the

paired robots. We express them here as

2 p4 =
2R1(

1 p3 +
1R3

3 p4 −
1 p2)

4 p6 =
4R3(

3 p5 +
3R5

5 p6 −
3 p4)

2 p6 =
2R1(

1 p5 +
1R5

5 p6 −
1 p2).

(7)



Now we are ready to derive the modular relative Jacobian

for the 3-arm parallel manipulator, 2
3J6, by invoking a similar

approach used in [10]. That is, we express translational and

rotational velocities of the end-effectors with respect to each

other. Thus the relative position of frame {6} with respect

to frame {2} is expressed as

2
3 p6 =

2 p4 +
2R4

4 p6. (8)

And taking the derivative of the above equation results in

2
3 ṗ6 =

2 ṗ4 +
2Ṙ4

4 p6 +
2R4

4 ṗ6

= 2 ṗ4 + S(2ω4)
2R4

4 p6 +
2R4

4 ṗ6

= 2 ṗ4 − S(2R4
4 p6)

2ω4 +
2R4

4 ṗ6.

(9)

Because angular velocities are linear, we can express the

relative angular velocity of frame {6} with respect to frame

{2} as
2
3ω6 =

2ω4 +
2R4

4ω6. (10)

Combining (9) and (10), we get
[

2
3 ṗ6
2
3ω6

]

=

[

2 p4 − S(2R4
4 p6)

2ω6 +
2R4

4 ṗ6
2ω4 +

2R4
4ω6

]

(11)

We express the above expressions in terms of the relative

Jacobians
[

2
3 ṗ6
2
3ω6

]

=

[

2Jp4 q̇24 − S(2R4
4 p6)

2Jo4 q̇24 +
2R4

4Jp6 q̇46
2Jo4 q̇24 +

2R4
4Jo6 q̇46

]

=

[[

I −S(2R4
4 p6)

0 I

][

2Jp4
2Jo4

]

q̇24 . . .

. . .+

[

2R4 0

0 2R4

][

4Jp6
4Jo6

]

q̇46

]

=

[[

I −S(2R4
4 p6)

0 I

]

2J4

[

2R4 0

0 2R4

]

4J6

][

q̇24

q̇46

]

=
[

2,4Ψ6
2J4

2Ω4
4J6

]

[

q̇24

q̇46

]

=
[

2,4Ψ6

[

−2Ψ4
2Ω1

1J2
2Ω3

3J4

]

. . .

. . .

2Ω4

[

−4Ψ6
4Ω3

3J4
4Ω5

5J6

]]

[

q̇24

q̇46

]

=
[

−2,4Ψ6
2Ψ4

2Ω1
1J2 (2,4Ψ6

2Ω3 −
2Ω4

4Ψ6
4Ω3)

3J4 . . .

. . .

2Ω4
4Ω5

5J6

]

[

q̇24

q̇46

]

.

(12)

In the second to the last equality of (12), we substitute

the dual-arm relative Jacobians of (1) and (2). To further

simplify, we group terms together, such that the modular

relative Jacobian for a 3-arm parallel manipulator can be

expressed as

2
3J6

=
[

−2,4Ψ6
2Ψ4

2Ω1
1J2 (2,4Ψ6

2Ω3 −
2Ω4

4Ψ6
4Ω3)

3J4 . . .

. . .

2Ω4
4Ω5

5J6

]

(13)

where i, jΨk means that the wrench transformation matrix has

the cross-product operator defined as S(iR j
j pk).

We then need to simplify (13) column by column. We

invoke Matlab matrix notation to do this. Thus the first

column of 2
3J6 is

2
3J6(:,1) =−2,4Ψ6

2Ψ4
2Ω1

1J2

=−

[

I −S(2R4
4 p6)

0 I

][

I −S(2 p4)
0 I

]

2Ω1
1J2

=−

[

I −S(2 p4 +
2R4

4 p6)
0 I

]

2Ω1
1J2

=−

[

I −S(2 p6)
0 I

]

2Ω1
1J2

=−2Ψ6
2Ω1

1J2.

(14)

The second column of 2
3J6 is

2
3J6(:,2)

= (2,4Ψ6
2Ω3 −

2Ω4
4Ψ6

4Ω3)
3J4

=

(

2,4Ψ6
2Ω3 −

[

2R4 0

0 2R4

][

I −S(4p6)
0 I

]

4Ω3

)

3J4

=

(

2,4Ψ6
2Ω3 −

[

2R4 −2R4S(4 p6)
2RT

4
2R4

0 2R4

]

4Ω3

)

3J4

=

(

2,4Ψ6
2Ω3 −

[

2R4 −S(2R4
4 p6)

2R4

0 2R4

]

4Ω3

)

3J4

=

(

2,4Ψ6
2Ω3 −

[

I −S(2R4
4 p6)

0 I

][

2R4 0

0 2R4

]

4Ω3

)

3J4

=
(

2,4Ψ6
2Ω3 −

2,4Ψ6
2Ω3

)

3J4

= 0.

(15)

This make the relative Jacobian of the 3-arm parallel manip-

ulator to be

2
3J6 =

[

−2Ψ6
2Ω1

1J2 0 2Ω5
5J6

]

(16)

which is identical to (3), except for the middle zero column.

Thus, in this type of formulation, the third arm will always

move in the null-space of the dual arm. A holistic modular

kinematic expression for the 3-arm parallel manipulator can

be expressed as

q̇246 =
2
3J+6

2x6 +(I− 2
3J+6

2
3J6)

2
3J+4

2x4 . . .

. . .+(I− 2
3J+6

2
3J6)(I −

2
3J+4

2
3J4)∇z

(17)

where q̇246 = [q̇2, q̇4, q̇6]
T , 2

3J4 = [2J4 0], and ∇z is the null

space posture. The null space projection of ∇z can be

computed as shown in [15], where maximum number of

tasks was utilized and prioritized despite singularities. The

expression in (17) shows that modularity of the kinematics

expressions for null space is achieved in both end-effector

and null-space motions.



Fig. 3. Snapshots of Gazebo simulation where the 3-arm parallel manipulators move in a coordinated manner, in single manipulator control.

IV. SIMULATION USING GAZEBO

This section presents simulation results of a 3-arm parallel

manipulator using the modular relative Jacobian derived in

the previous section. Robot simulator Gazebo 2.2.5 is used

as the simulation platform with Robot Operating Systems

(ROS) Indigo. A Universal Robotic Description Format

(URDF) of the 7-DOF KUKA LWR was created. The

simulation is running under Ubuntu Trusty 14.04 LTS 64-

bit with Intel Core i5-4210U quad-core processor.

A. Simulation Controller

The controller in the simulation is a controller with purely

kinematic information, without any dynamics information

included. This can be a limitation in the simulation. The

simulator takes in torque inputs from the controller. And

because the implemented control is purely a kinematics

controller, the output of the velocity controller stated below

was directly converted to torques and passed to the simulator.

The velocity controller is expressed as

q̇246 = J+R ∆(xR)+ (I− J+R JR)
1
3J+2 ∆(1x2)

. . .+(I− J+R JR)(I −
1
3J+2

1
3J2)

2
3J+4 ∆(2x4) . . .

. . .+(I− J+R JR)(I −
1
3J+2

1
3J2)(I −

2
3J+4

2
3J4)∇z

(18)

where JR = 2
3J6 and xR = 2

3x6 is the relative position and

orientation vector. For the delta function, given x as the input,

∆(x) = kP(xd − x)+ kV (ẋd − ẋ)+ kI ∑
t=0

(xd − x) (19)

where xd is the desired x, ẋd desired velocity of xd , ẋ is

the velocity of x, t is the time, and kp, kv, and ki are the

proportional, derivative, and integral gains. The 3-arm null-

space Jacobians are 2
3J4 = [2J4 0] and 1

3J2 = [1J2 0 0].
The ∇z is the null-space gradient that controls the posture

of the arms, such that ∇(z) = [∆(q2),∆(q4),∆(q6)]
T .

For (18), the first term on the left hand side of the equation

controls the relative motion of robot C end-effector with

respect to the robot A end-effector, in a dual-arm kind of

control strategy. In this approach, the end-effector of robot B

lies in the null-space. The second term controls the relative

motion of robot B end-effector with respect to robot A end-

effector. The third term moves the robot A end-effector

(which is the overall reference frame) with respect to the

world frame. Because the end-effectors of robot B and C

moves with respect to the robot A end-effector, all three end-

effectors will move, as robot A end-effector is moving. The

desired robot posture as defined in ∇z is accommodated as

long as it does not have any conflict with the three other

higher priority tasks.

B. The Desired Values

The desired values are the following (with lengths in

meters and angles in degrees): 2
3x6d = [0,0,0.3,0,180,0]T

(x, y, and z position and roll, pitch and yaw orientation),
2x4d = [−0.3,0,0,0,0,0]T , q2d = [0,+60,0,−45,0,−45,0]T ,

q4d = [0,−60,0,+45,0,+45,0]T , and q6d =
[0,+60,0,−45,0,−45,0]T . All desired velocities are

zero. The desired values 1x2d changes according in
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Fig. 6. The robot A position error 1 p2.
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1s as follows: 1x2d = [0.5,0,0.5,90,0,0]Tt=0, 1x2d =
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[0.5,−0.5,0.5,90,0,0]Tt=1, 1x2d = [0,−0.5,0.5,90,0,0]Tt=2,

and 1x2d = [0,0,0.5,90,0,0]Tt=3. Then 1x2d loops back in a

4s cycle of desired values. A simulation of the described

desired motion is shown in Fig. 3.

Note that Gazebo simulator does not run in real-time. The

gains are set at kP(1 : 3) = 3000 for position and kP(4 : 6) =
1500 for orientation, kV = 200, and kI = 0.1. Note that the

∆(q) function in the null-space used kP = 200, and kV = kI =
0. Now we are ready to show the simulation results.

C. Numerical Results

The error results of the numerical simulation from the

Gazebo simulation in Fig. 3 are shown from Fig. 4 to 10. The

end-effector of robot A (frame {2}) is the reference frame for

the motion of robot C end-effector (frame {6}) and motion

of robot B end-effector (frame {4}). However, motion of {6}
with respect to {2} is the highest priority, as shown in (18).

Second priority is the motion of {2} with respect to its base,

third priority is the motion of {4} with respect to {2}, and

last priority is the null-space posture of the joints.

For the entire motion, only {2} is controlled to move

at an unending square path while the relative position and

orientation of {6} and {4} with respect to {2} is fixed at

the desired values. A video of the experiment is shown

here: https://youtu.be/w87Ei7Z2Uis. The resulting motion

is that all the end-effectors are moving as a results of

specified relative motion, according to the hierarchy of task

prioritization of a single manipulator control.

Thus, the least position error is reflected by the error in
2
3 p6 shown in Fig. 4, the task with the highest priority. In

most cases, the task with the higher priority has the least

errors compared the less priority tasks, except when at certain

manipulator configurations that are difficult to achieve for

the given desired values. The results of this simulation can

be greatly improved when the dynamics of the system is

compensated or canceled in the controller.

V. CONCLUSION

This work derived a modular relative Jacobian of a 3-

arm parallel manipulator, based on the dual-arm relative

Jacobian approach of computation. In this new expression,

the Jacobian of the third manipulator always lie in the null

of the the overall Jacobian. In addition, it was shown that

this approach affords a task prioritization control that is

effectively a single manipulator, and thus task prioritization

can be strictly implemented.
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